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Recommender Systems

“ Recommendation: a suggestion or proposal as to the best course of action,
especially one put forward by an authoritative body.”

— Oxford Languages

“ System: 1 . a set of things working together as parts of a mechanism or an
interconnecting network; a complex whole. 2. a set of principles or procedures
according to which something is done; an organized scheme or method.”

— Oxford Languages
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Recommendation

• Recommendations have existed since ancient times.
• Societies have benefited from following the advice of their

ancestors.
• For example, priests have traditionally provided guidance to people.
• However, these examples are not based on systematic tools.

What is considered the first systematic tool created to provide advice to
people about their future?
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Fu Xi

• Fu Xi is a mythical emperor of China
• He taught his people how to domesticate animals, cook, fish with

nets, and hunt with iron weapons over 5000 years ago.
• He is the author o I Ching (The book of changes), one of the oldest

book in the world.
– Guide for moral living but also a personalised oracle for one’s future!
– Instead of machine learning, he used patterns in nature and sky.
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I Ching

• You can do your I Ching consult online
• I did one, let’s see... I was in doubt if the exam for this course should

be hard or easy. Then, I asked for these divine recommender what
to do:
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I Ching - Hexagram
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I Ching - Recommendation
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I Ching
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Nowadays...
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Nowadays...
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Why recommender systems?
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It is not just about youtube...

• 3,000,000 books per year (Total of 129,864,880 available)
• 137 million new tracks every year
• 500 million tweets are shared every day
• You have 38 million minutes of live
• Conclusion: we need some help
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Recommender Systems

• Recommenders recommend:
– Items to users (most common)
– Users to Items
– Items to Items
– Users to Users

• Items are movies, products, news, music, books, recipes, ...

Working in pairs: try to find one example of each four recommender
scenarios above.
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Recommender Systems

• WLOG, we will focus on recommend users relevant items
– Predictive modelling: predict the rate of item m by the user u
– Retrieve modelling: learning a rank systems

• Typically based on past interactions and (or) attributes (from users
and items)

• Interactions: normally modelled as interaction matrix
– Explicit: a user rate a song with 4 stars in a scale from 0 to 5
– Implicit: a user watched 80% of a movie

• Attributes: normally modelled as attribute matrices
– Users: gender, age, location, · · ·
– Items: text, video, meta-data, · · ·
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Modelling Interactions: Explicit feedback
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Modelling Interactions: Implicit feedback
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Modelling Interactions: Implicit feedback
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Modelling Attributes
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Modelling Attributes
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Personalised Machine Learning

• Personalisation is not a simple regression or classification problem
• A personalised model implies that: if the user have different

interactions (or attribute) the recommendation should be different
• Suppose the vector au (am) are attribute vectors of user u (item m)
• We can use linear regression to predict how users u will like item m

rui = ω⊤ ×
[

au
am

]

• Is linear regression a personalised model for recommenders? No!
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Recommendation Algorithms
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Recommender as a Matrix
• As we saw, we can model recommenders as matrices.

• The ratings can be stored in a ranking matrix R of dimension m × n with elements
from R ∪ {?}.

• An example of a rating matrix for m = 4 users and n = 6 items can read

R =


1 ? ? 2 ? 1
? 2 3 ? 2 1
1 5 5 ? ? 5
? ? 2 ? ? 3

 .

Meaning, e.g., that user u1 ranked items i1 and i6 with 1 star, item i4 with 2 stars and
had no interactions with items i2, i3 and i4.

• Our goal is to predict the unknown ratings ru,i =? using the knowledge of the known
ratings ru,i ̸=?.
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Idea of matrix factorization

• By matrix factorization we usually mean expressing a given matrix R
as a matrix product of two (or more) matrices with some non-trivial
properties. For example:

R = UV⊤

• These factorizations are a cornerstone of many algorithms and
methods or are used to reach more numerically stable
computations.

Do we need to know all the entries of a matrix R to factorize it, for
example R = UV⊤?
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Intuition of matrix factorization
• As for the recommendation systems, the inspiration comes mainly from the SVD as

it can be used for constructing latent features or, in other words, dimensionality re-
duction using projections to lower dimensional space.

• The very basic idea of the lower dimensional approximation of an input matrix R of
dimension m × n is based on this first-linear-algebra-lesson fact: Multiplying matrices
U of dimension m ×d and V of dimension d ×n we get a matrix of dimension m ×n.
This is true for any positive integer d.

• And this is the idea: Given a rating matrix R, find lower dimensional matrices U and
V so that the known elements of R are well approximated by the matrix UV⊤.
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Matrix factorization for recommenders

• Let us denote:

– The i-th row of U as ui ; the number of rows of U equals
the number of users |U|.

– The j-th column of V as vj; the number of columns of V
equals the number of items |I|.

– Ω the subset of U × I of user-item pairs (i, j) such that
ri,j is known, i.e., ri,j ̸=?.

• The approximation of ri,j is given by the number uT
i vj, i.e., by the

dot product of the two d-dimensional vectors.
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Optmization Problem

• The error of approximation is usually measured by the squared
residual:

(ri,j − uT
i vj)

2.

• Hence, the matrices U and V are obtained by solving the
optimization task:

argminU,V

∑
(i,j)∈Ω

(ri,j − uT
i vj)

2 + λ(
∑

x

||ux ||2 +
∑

y

||vy||2).
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Sparsity and prediction

• The matrices U and V are optimized only by considering the known
entries of R that are usually only a minority of entries.

• E.g. in the Netflix prize in 2006 there were n = 17K movies and
m = 500K users, meaning that the matrix R had 8500M entries. But
only 100M was given by Netflix!

• Still, the result of the matrix multiplication UV⊤ is a matrix having the
same dimensions as R with all entries known!

• The unknown rating ri,j =? is estimated as r̂i,j = uT
i vj..
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Example

• Consider our toy example matrix from above:

R =


1 ? ? 2 ? 1
? 2 3 ? 2 1
1 5 5 ? ? 5
? ? 2 ? ? 3

 .

• Assume that we chose the hyperparameter d = 2, i.e., we look for approximation
matrices U and V with dimensions 4 × 2 and 2 × 6, respectively.

• Let us pretend that the matrices resulting from the optimization are

U =


0.3 0.7
0.3 0.5
0.2 0.4
0.2 0.1

 and V⊤ =

(
1 10 11 10 4 20
1 −1 −2 −1 1 −4

)
.
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Example

• The resulting approximation is

UV⊤ =


0.3 0.7
0.3 0.5
0.2 0.4
0.2 0.1

(
1 10 11 10 4 20
1 −1 −2 −1 1 −4

)
=

=


1 2.3 1.9 2.3 1.9 3.2

0.8 2.5 2.3 2.5 1.7 4
0.6 1.6 1.4 1.6 1.2 2.4
0.3 1.9 2 1.9 0.9 3.6

 ,

where the red numbers are the desired predictions!

• E.g. the 3rd user predicted rating of the 4th item is r̂3,4 = 1.6.
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Supervised learning task

• The learning parameters: U ∈ Rm×d and V ∈ Rn×d

• The hyperparameters:
– the regularization constant λ > 0,
– the matrix dimension d, which is a positive integer (significantly smaller

than min{m,n}).

• These hyperparameters can be tuned in the usual way via
crossvalidation

• Therefore we would like to learn U and V , given d and λ by

argminU,V

∑
(i,j)∈Ω

(ri,j − uT
i vj)

2 + λ(
∑

x

||ux ||2 +
∑

y

||vy||2).
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Alternating least squares (ALS)

• The idea of ALS is to fix alternately the matrix U and V . The non-fixed
matrix is then considered learning variable and a subject to minimiza-
tion.

• With one of the matrices fixed, the optimization problem becomes
convex and very similar to the linear regression problem.

• Let’s try ti understand how the mechanism works
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Alternating least squares (ALS)

• Then we have the following optimization problem

minui ||RΩi − ui
⊤VΩi⊤||2 + λ||ui ||2

• Convex problem with closed-form

ûi = (VΩi VΩi⊤+ λI)−1V⊤
Ωi RΩi

Alternating least squares (ALS)
Randomly initialize U and V

• WHILE does not converge

– ∀i ∈ U , minui ||RΩi − ui
⊤VΩi⊤||2 + λ||ui ||2

– ∀j ∈ I, minvj ||RΩj − vj
⊤UΩj⊤||2 + λ||vj||228 Recommender Systems
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MF for Implicit Feedback

• In real-world applications, we often observe more implicit feedback
than explicit feedback.

• In fact, explicit feedback is sometimes considered implicit.
• Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean
that the user likes A more than twice as much as B?

• The method we learned before is more appropriate for explicit
feedback. Why?
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Modelling Implicit Feedback

• Let’s understand a more appropriate method

• Assume the binary interaction matrix P:

P =


1 0 0 1 0 1
0 1 1 0 1 1
1 1 1 0 0 1
0 0 1 0 0 1

 .

• That is, if user-i interact with item-j, than Pij = 1, otherwise Pij = 0.

• Now let C be a matrix of confidence regarding the interaction:

C =


0.85 0 0 0.34 0 0.98

0 0.37 0.10 0 0.63 0.01
0.45 0.42 0.43 0 0 0.23

0 0 0.26 0 0 0.88

 .
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Collaborative Filtering for Implicit Feedback

• Then we propose the following optimisation problem:

minU ,V

∑
i,j

Cij(Pij − u⊤
i vj)

2 + λ||ui ||2 + λ||vj||2

• Two main differences from previous MF method:

– We need to account for the varying confidence levels
– Optimization should account for all possible j, j pairs, rather than only

those corresponding to observed data.
• We can use gradient descent to solve it.

• And ALS? By fixing V , can we find ui?
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Closed form

• Assume V being fix and let’s find ui .

• Then we need to minimize the following loss

Li = minui

∑
j

Cij(Pij − u⊤
i vj)

2 + λ||ui ||2

That is the same of:

Li = minui

∑
j

(
√

Cij(Pij − u⊤
i vj))

2 + λ||ui ||2

Exercise: Find the closed form.
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Alternating least squares (ALS)
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Closed form

• Therefore is the same of solving:

Li = ||
√

CiPi −
√

CiVui ||2 + λ+ ||ui ||2

• Taking the derivative

∇ui = −2(
√

CiV )⊤(
√

CiPi −
√

CiVui) + 2λui

• Remind if D is diagonal D =
√

D ×
√

D is trivial and D = D⊤

• Therefore, with just some algebraic derivations

ui = (V⊤CiV + λI)−1V⊤CiPi
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RECAP: Autoencoder

• An autoencoder is a type of feed-forward neural network
• It is designed to reconstruct its input xi ad output xi

• To prevent trivial solutions, the network includes a bottleneck (or
code) layer

– Significantly smaller dimension than the input
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RECAP: Autoencoder

• An autoencoder is also composed by a encoder/decoder
• The encoder and the decoder have normally similar structure
• More formally: let E() be a encoder and D() be a decoder. Our

optmization problem can be described as:

minE,D
∑

i

||xi −D(E(xi))||
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Autoencoder

How can we use autoencoders to predict implicit feedback?
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Autoencoders for CF
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Autoencoders for CF

• Autoencoders are frequently used for collaborative filtering.
• They are very accurate in predicting rankings.
• They can also be used to find clusters with the code.
• Empirical results show that the best architecture is often not very

deep.
• What would be the shallowest autoencoder for Collaborative

Filtering?

39 Recommender Systems
EASSS 2023



EASE

• EASE is the shallowest auto-encoder as possible
• It aims to solve the following problem

minB||X − XB||2 + λ||B||2 s.t diag(B) = 0

• Why do we need the constraint diag(B) = 0?
• EASE has closed form solution! See here
• Is this a good method?
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EASE Results
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Sequential Recommendation

• Sequential recommendation is the task of predicting the next item
that a user will interact

• There is extensive sequential recommendation algorithms
– Markov chains
– Recurrent neural networks (RNNs)
– Long short-term memory (LSTM) networks
– Embedding-base Neural Networks

• The models should learn patterns in a user’s behavior over time
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Sequential Recommendation
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Sequential Recommendation
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Sequential Recommendation
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Triplets problem
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Triplets problem

45 Recommender Systems
EASSS 2023



Triplets problem to Recommenders

• The items we show to user can influence their
decision

• Based on neuroscience
• Sometimes the position we show does not matter

significantly
• Context embedding: summarizes the context of the

recommendation
• Provide not just accurate recommendation but also

interpretability
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Care Model
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Care Model
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Care Model
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The Time Dimension in Recommendations

• Do you like the same things, morning and evenings?
• For example, the playlist recommendations on Spotify should

change based on the time of day and day of the week.
– Rarely do people have the same mood on Monday morning as they

do on Friday evening.

• Taste and preferences change over time, so recommendations
should adapt accordingly.

• The envoroment of RS is dynamic
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Addressing the Cold-Start Problem

• Recommender systems typically require millions of interactions
• However, new systems often have limited interaction data available
• Attribute-based recommendations can provide valuable

information
– Normally less significant than interactions themselves
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Transfer Learning in RS
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Tandem (Marriage) Problem
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Greedy Czech Algorithm
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Rogue Combination
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Rogue Combination
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm...
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What about Recommender Systems?
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What about Recommender Systems?
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Tourists and Restaurants

• Restaurants has working times
• Tourists have visiting period
• Restaurants has limited number of tables
• Tourists has diet restrictions
• A new restaurant can be added to the item list
• A tourist might not have interactions for the visiting city

Recommendation are often a challenging task in a Tandem Problem
scenario.
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Multi-agents in RS

• Opportunity for research development
• More applied previous works with almost no theory
• Not restrict to the Tandem problem
• Not restrict to the user and items as agents
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Modern matters in RS

• Fairness
– Recommender systems have the potential to perpetuate or even

amplify bias
– Unequal treatment of different groups of users

• Filter Bubbles
– Common problem on RSs that rely heavily on personalization
– Recommendations that align with a user’s pre-existing preferences
– Negative consequences for both individual users and society
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Modern matters in RS

• Challenging to evaluate
– Lack of ground truth
– Changes over the time
– Diversity of user preferences

• Scalability
– When terabytes of memory is not enough
– Can result in increased computational costs and reduced

performance
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Modern matters in RS

• Privacy concerns
– Recommender systems often rely on user data to provide accurate

recommendations
– Legislation (GDPR)
– Lack of interpretability

• Dynamic preference
– User preferences and item characteristics can be highly dynamic
– Item availability
– Difficult to provide accurate and up-to-date recommendations
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