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Two-player games:
The Basics
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Uncle Scrooge found out that a penny was missing from his vault.
Dewey and Huey were accused of taking it!
Each one can either admit or deny he took it

• If Dewey admits and Huey admits, then Dewey will be suspended for 2 hours
• If Dewey admits and Huey denies, then Dewey will be suspended for 0 hours
• If Dewey denies and Huey admits, then Dewey will be suspended for 3 hours
• If Dewey denies and Huey denies, then Dewey will be suspended for 1 hour

Dewey

Huey

• If Dewey admits and Huey admits, then Huey will be suspended for 2 hours
• If Dewey admits and Huey denies, then Huey will be suspended for 3 hours
• If Dewey denies and Huey admits, then Huey will be suspended for 0 hours
• If Dewey denies and Huey denies, then Huey will be suspended for 1 hour admits

denies

admitsdenies

-2-3

-1 0

-2

-3-1

0

admitsdenies

admits

denies

Dewey and Huey face a dilemma
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Uncle Scrooge found out that a penny was missing from his vault.
Dewey and Huey were accused of taking it!

Dewey

Huey

-2

-3-1

0

admitsdenies

admits

denies

admits

denies

admitsdenies

-2-3

-1 0

admits

denies

admitsdenies

-2-3

-1 0

-1 -3

0 -2

• Each one of them want to 
minimize their individual 
suspension time!

• Each one is clever!

• Uncle Scrooge keeps them in 
separate rooms so they cannot 
communicate!

 What should they choose????

Dewey and Huey face a dilemma
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Uncle Scrooge found out that a penny was missing from his vault.
Dewey and Huey were accused of taking it!

Dewey

Huey

admits

denies

admitsdenies

-2-3

-1 0

-1 -3

0 -2

• Each one of them want to 
minimize their individual 
suspension time!

• Each one is clever!

• Uncle Scrooge keeps them in 
separate rooms so they cannot 
communicate!

 What should they choose????

- If I deny, then Huey should admit.
  Thus, I’ll get suspended for 3 hours!
- If I admit, then Huey should admit.
  Thus I’ll get suspended for 2 hours!

- If I deny, then Dewey should admit.
  Thus, I’ll get suspended for 3 hours!
- If I admit, then Dewey should admit.
  Thus I’ll get suspended for 2 hours!

So I will admit!

So I will admit!

Dewey and Huey face a dilemma
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Dewey and Huey play Rock-Paper-
Scissors

Dewey

Huey

• Each one wants to maximize his score!

 What should they choose????

Rock
0

0

-1

1

Paper

Scissors

Rock Paper Scissors

1

-1

-1

1

-1

1

0

0

0

0

1

-1

1

-1

- If I play Rock, then Huey will play Paper,   

WHAT SHOULD I PLAY??

 BUT THEN… 

 so then I will have to play Scissors, 
but then Huey will play Rock,
so then I will have to play Paper,
but then Huey will play Scissors,
so then I will have to play Rock,

Shall I play at random???
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Two-Player Games (Bimatrix Games)

Dewey

Huey

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

• Two players: Row player and Column player

• A set of actions for every player
Row player has  actions
Column player has  actions

• Payoff matrix for every player
for the Row player of size 
 for the Column player of size 

Row player has 3 actions: T, M, B
Column player has 2 actions: L, R

• is the payoff the Row player gets when
Row player chooses action  and 
Column player chooses action 

• is the payoff the Column player gets when
Row player chooses action  and 
Column player chooses action 
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Two-Player Games - Strategies
To play the game:
- Row player chooses action 
- Column player chooses action • Two players: Row player and Column player

• A set of actions for every player
Row player has  actions
Column player has  actions

• Payoff matrix for every player
for the Row player of size 
 for the Column player of size 

• is the payoff the Row player gets when
Row player chooses action  and 
Column player chooses action 

• is the payoff the Column player gets when
Row player chooses action  and 
Column player chooses action 

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒚𝟏 𝒚𝟐

 is the strategy of Row player
 is the strategy of Column player
 is the strategy profile
is a pure strategy if  for some 

- Column player chooses his action according
to probability distribution ; 
 is the probability he chooses action 

They can choose an action probabilistically!
- Row player chooses his action according

to probability distribution ; 
 is the probability he chooses action 
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Two-Player Games – Expected Payoffs

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒚𝟏 𝒚𝟐

To play the game:
- Row player chooses action 
- Column player chooses action 
They can choose an action probabilistically!
- Row player chooses his action according

to probability distribution ; 
 is the probability he chooses action 

- Column player chooses his action according
to probability distribution ; 
 is the probability he chooses action 

 is the strategy of Row player
 is the strategy of Column player
 is the strategy profile
is a pure strategy if  for some 

In strategy profile 
- The expected payoff of Row player is

∑
𝒊=𝟏

𝒎

∑
𝒋=𝟏

𝒏

𝒙 𝒊 ⋅𝒚 𝒋⋅𝑹𝒊𝒋=𝒙𝑻 𝑹𝒚

- The expected payoff of Column player is

∑
𝒊=𝟏

𝒎

∑
𝒋=𝟏

𝒏

𝒙 𝒊 ⋅𝒚 𝒋⋅𝑪 𝒊𝒋=𝒙𝑻 𝑪𝒚
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Two-Player Games - Payoffs
In strategy profile 
- The expected payoff of Row player is

- The expected payoff of Column player is

∑
𝒊=𝟏

𝒎

∑
𝒋=𝟏

𝒏

𝒙 𝒊 ⋅𝒚 𝒋⋅𝑪 𝒊𝒋=𝒙𝑻 𝑪𝒚

∑
𝒊=𝟏

𝒎

∑
𝒋=𝟏

𝒏

𝒙 𝒊 ⋅𝒚 𝒋⋅𝑹𝒊𝒋=𝒙𝑻 𝑹𝒚

𝒙𝑻 𝑹𝒚=∑
𝒊=𝟏

𝒎

𝒙 𝒊∑
𝒋=𝟏

𝒏

𝑹𝒊𝒋 ⋅𝒚 𝒋=¿∑
𝒊=𝟏

𝒎

𝒙 𝒊⋅ (𝑹𝒚 )𝒊¿

𝒙𝑻 𝑪𝒚=∑
𝒋=𝟏

𝒏

𝒚 𝒋∑
𝒊=𝟏

𝒎

𝑪 𝒊𝒋 ⋅𝒙 𝒊=¿∑
𝒋=𝟏

𝒏

𝒚 𝒋 ⋅ (𝑪𝑻 𝒙 ) 𝒋 ¿

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒚𝟏 𝒚𝟐

(𝑹𝒚 )𝟏=𝟑 𝒚𝟏+𝟑 𝒚𝟐

(𝑹𝒚 )𝟐=𝟐 𝒚𝟏+𝟓 𝒚𝟐

(𝑹𝒚 )𝟑=𝟎 𝒚𝟏+𝟔 𝒚𝟐

(𝑪𝑻 𝒙 )𝟏=𝟑 𝒙𝟏+𝟐 𝒙𝟐+𝟑𝒙𝟑

(𝑪𝑻 𝒙 )𝟐=𝟐 𝒙𝟏+𝟔 𝒙𝟐+𝟏𝒙𝟑

Expected payoff of 
action 

Expected payoff of 
action 
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Two-Player Games – Best 
Responses/Supports 

In strategy profile 
- The expected payoff of Row player is

- The expected payoff of Column player is

𝒙𝑻 𝑹𝒚=∑
𝒊=𝟏

𝒎

𝒙 𝒊⋅ (𝑹𝒚 )𝒊

𝒙𝑻 𝑪𝒚=∑
𝒋=𝟏

𝒏

𝒚 𝒋⋅ (𝑪𝑻 𝒙 ) 𝒋

Expected payoff of 
action 

Expected payoff of 
action 

Best responses
- Given a strategy  for Column player

action  is a pure best response
if 

- Given a strategy  for Row player
action  is a pure best response
if 

Support
- The support of a strategy  is the set of 

actions played with positive probability

- The support of a strategy  is the set of 
actions played with positive probability

Regret
- The regret of Row player under is
- The regret of Column player under is
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Two-Player Games – Best 
Responses/Supports 

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝟏/𝟐

𝟏/𝟐

𝟎

𝟐/𝟑 𝟏/𝟑

(𝑹 ⋅𝒚 )𝟏=𝟑⋅
𝟐
𝟑

+𝟑 ⋅
𝟏
𝟑

=
𝟗
𝟑

(𝑹 ⋅𝒚 )𝟐=𝟐⋅
𝟐
𝟑

+𝟓 ⋅
𝟏
𝟑

=
𝟗
𝟑

(𝑹 ⋅𝒚 )𝟑=𝟎 ⋅
𝟐
𝟑

+𝟔 ⋅
𝟏
𝟑

=
𝟔
𝟑

(𝒙 ⋅𝑪𝑻 )𝟏=𝟑 ⋅
𝟏
𝟐

+𝟐 ⋅
𝟏
𝟐

+𝟑⋅𝟎=
𝟓
𝟐

(𝒙 ⋅𝑪𝑻 )𝟐=𝟐 ⋅
𝟏
𝟐

+𝟔 ⋅
𝟏
𝟐

+𝟏⋅𝟎=
𝟖
𝟐

𝒔𝒖𝒑𝒑 (𝒙 )= {𝑻 ,𝑴 }
Best responses
- Given a strategy  for Column player

action  is a pure best response
if 

- Given a strategy  for Row player
action  is a pure best response
if 

Support
- The support of a strategy  is the set of 

actions played with positive probability

- The support of a strategy  is the set of 
actions played with positive probability

Regret
- The regret of Row player under is
- The regret of Column player under is

𝒙𝑻 𝑹𝒚=
𝟏
𝟐
𝟗
𝟑

+
𝟏
𝟐
𝟗
𝟑

+𝟎 ⋅
𝟔
𝟑

=
𝟗
𝟑

Regret for Row: 

𝒙𝑻 𝑪𝒚=
𝟐
𝟑
𝟓
𝟐

+
𝟏
𝟑
𝟖
𝟐

=
𝟏𝟖
𝟔

Regret for Col: 
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Two-Player Games – Nash Equilibrium
 is a Nash equilibrium of a bimatrix game 
if one of the following holds (equivalent definitions)

Best responses
- Given a strategy  for Column player

action  is a pure best response
if 

- Given a strategy  for Row player
action  is a pure best response
if 

Support
- The support of a strategy  is the set of 

actions played with positive probability

- The support of a strategy  is the set of 
actions played with positive probability

Regret
- The regret of Row player under is
- The regret of Column player under is

𝒊̂∈ 𝒔𝒖𝒑𝒑 (𝒙 ) ⇒ (𝑹𝒚 )
𝑖̂
=𝒎𝒂𝒙𝒊(𝑹𝒚 )𝒊

𝒋̂∈𝒔𝒖𝒑𝒑 (𝒚 ) ⇒ (𝑪𝑻 𝒙)
𝒋̂
=𝒎𝒂𝒙 𝒋(𝑪

𝑻 𝒙) 𝒋

The supports of both players contain only pure best responses

The regret of every player is zero

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚=𝟎

 = 0 

 is a best response against 

Both players play a (mixed) best response

 is a best response against 

At equilibrium no player can improve their 
payoff by unilaterally changing their strategy
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Two-Player Games – Nash Equilibrium
 is a Nash equilibrium of a bimatrix game 
if one of the following holds (equivalent definitions)

𝒊̂∈ 𝒔𝒖𝒑𝒑 (𝒙 ) ⇒ (𝑹𝒚 )
𝑖̂
=𝒎𝒂𝒙𝒊(𝑹𝒚 )𝒊

𝒋̂∈𝒔𝒖𝒑𝒑 (𝒚 ) ⇒ (𝑪𝑻 𝒙)
𝒋̂
=𝒎𝒂𝒙 𝒋(𝑪

𝑻 𝒙) 𝒋

The supports of both players contain only pure best responses

The regret of every player is zero

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚=𝟎

 = 0 

 is a best response against 

Both players play a (mixed) best response

 is a best response against 

Every finite game possesses at least one Nash equilibrium

Theorem (Nash)

- finite number of players
- finite number of actions for every player
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Two-Player Games – Nash Equilibrium

Every finite game possesses at least one Nash equilibrium

Theorem (Nash)

- finite number of players
- finite number of actions for every player

Consider the two-player game:
- the actions of each player is any number in (0,1)
- the payoff of a player is 

1 if they chose the lower number of the two
0 if they chose the higher number of the two

Is there a Nash equilibrium in the game above?

NO!
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Two-Player Games – Example

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝟏/𝟐

𝟏/𝟐

𝟎

𝟐/𝟑 𝟏/𝟑

(𝑹 ⋅𝒚 )𝟏=𝟑⋅
𝟐
𝟑

+𝟑 ⋅
𝟏
𝟑

=
𝟗
𝟑

(𝑹 ⋅𝒚 )𝟐=𝟐⋅
𝟐
𝟑

+𝟓 ⋅
𝟏
𝟑

=
𝟗
𝟑

(𝑹 ⋅𝒚 )𝟑=𝟎 ⋅
𝟐
𝟑

+𝟔 ⋅
𝟏
𝟑

=
𝟔
𝟑

(𝒙𝑻 ⋅𝑪 )𝟏=𝟑 ⋅
𝟏
𝟐

+𝟐 ⋅
𝟏
𝟐

+𝟑⋅𝟎=
𝟓
𝟐

(𝒙𝑻 ⋅𝑪 )𝟐=𝟐 ⋅
𝟏
𝟐

+𝟔 ⋅
𝟏
𝟐

+𝟏⋅𝟎=
𝟖
𝟐

𝒙𝑻 𝑹𝒚=
𝟏
𝟐
𝟗
𝟑

+
𝟏
𝟐
𝟗
𝟑

+𝟎 ⋅
𝟔
𝟑

=
𝟗
𝟑

Regret for Row: 

𝒙𝑻 𝑪𝒚=
𝟐
𝟑
𝟓
𝟐

+
𝟏
𝟑
𝟖
𝟐

=
𝟏𝟖
𝟔

Regret for Col: 
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Two-Player Games – Example

45

𝟏/𝟓

𝟎

𝟐/𝟑 𝟏/𝟑

(𝒙𝑻 ⋅𝑪 )𝟏=𝟑 ⋅
𝟒
𝟓

+𝟐⋅
𝟏
𝟓

+𝟑 ⋅𝟎=
𝟏𝟒
𝟓

(𝒙𝑻 ⋅𝑪 )𝟐=𝟐 ⋅
𝟒
𝟓

+𝟔⋅
𝟏
𝟓

+𝟏 ⋅𝟎=
𝟏𝟒
𝟓

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

(𝑹 ⋅𝒚 )𝟏=𝟑⋅
𝟐
𝟑

+𝟑 ⋅
𝟏
𝟑

=
𝟗
𝟑

(𝑹 ⋅𝒚 )𝟐=𝟐⋅
𝟐
𝟑

+𝟓 ⋅
𝟏
𝟑

=
𝟗
𝟑

(𝑹 ⋅𝒚 )𝟑=𝟎 ⋅
𝟐
𝟑

+𝟔 ⋅
𝟏
𝟑

=
𝟔
𝟑

𝒙𝑻 𝑹𝒚=
𝟒
𝟓
𝟗
𝟑

+
𝟏
𝟓
𝟗
𝟑

+𝟎 ⋅
𝟔
𝟑

=
𝟗
𝟑

Regret for Row: 

𝒙𝑻 𝑪 𝒚=
𝟐
𝟑
𝟏𝟒
𝟓

+
𝟏
𝟑
𝟏𝟒
𝟓

=
𝟏𝟒
𝟓

Regret for Col: 
𝒊̂∈ 𝒔𝒖𝒑𝒑 (𝒙 ) ⇒ (𝑹𝒚 )

𝑖̂
=𝒎𝒂𝒙𝒊(𝑹𝒚 )𝒊

𝒋̂∈𝒔𝒖𝒑𝒑 (𝒚 ) ⇒ (𝑪𝑻 𝒙)
𝒋̂
=𝒎𝒂𝒙 𝒋(𝑪

𝑻 𝒙) 𝒋

The supports of both players contain only pure best responses

The regret of every player is zero

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚=𝟎

 = 0 
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Two-Player Games – Example

45

𝟏/𝟓

𝟎

𝟐/𝟑 𝟏/𝟑

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝒙𝑻 𝑹𝒚=𝟑 𝒙𝑻𝑪 𝒚=
𝟏𝟓
𝟒

0

𝟏/𝟑

𝟐/𝟑

𝟏/𝟑 𝟐/𝟑

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝒙𝑻 𝑹𝒚=𝟒𝒙𝑻 𝑪𝒚=
𝟖
𝟑

1

𝟎

𝟎

𝟏 𝟎

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

𝒙𝑻 𝑹𝒚=𝟑𝒙𝑻𝑪𝒚=𝟑

Best NE for Column Best NE for Row
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Two-Player Games – Approximate NE

𝒊̂∈ 𝒔𝒖𝒑𝒑 (𝒙 ) ⇒ (𝑹𝒚 )
𝑖̂
=𝒎𝒂𝒙𝒊(𝑹𝒚 )𝒊

𝒋̂∈𝒔𝒖𝒑𝒑 (𝒚 ) ⇒ (𝑪𝑻 𝒙)
𝒋̂
=𝒎𝒂𝒙 𝒋(𝑪

𝑻 𝒙) 𝒋

The supports of both players contain only pure best responses

𝒊̂∈ 𝒔𝒖𝒑𝒑 (𝒙 ) ⇒ (𝑹𝒚 )
𝑖̂≥𝒎𝒂𝒙 𝒊 (𝑹𝒚 )𝒊−𝝐

𝒋̂∈𝒔𝒖𝒑𝒑 (𝒚 ) ⇒ (𝑪𝑻 𝒙 )
𝒋̂≥𝒎𝒂𝒙 𝒋(𝑪

𝑻 𝒙) 𝒋−𝝐

The supports of both players contain only -best responses

 is an -Well-Supported NE of  if

 is an NE of  if

The regret of every player is zero

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚=𝟎

 = 0 

 is an NE of  if

The regret of every player is at most 

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚 ≤𝝐

𝒎𝒂𝒙 𝒋(𝑪
𝑻 𝒙 ) 𝒋− 𝒙

𝑻 𝑪𝒚 ≤𝝐

 is an -NE of  if

 is an -WSNE 

The smaller the  the better the approximation!
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Two-Player Games – Normalization

𝒊̂∈ 𝒔𝒖𝒑𝒑 (𝒙 ) ⇒ (𝑹𝒚 )
𝑖̂≥𝒎𝒂𝒙 𝒊 (𝑹𝒚 )𝒊−𝝐

𝒋̂∈𝒔𝒖𝒑𝒑 (𝒚 ) ⇒ (𝑪𝑻 𝒙 )
𝒋̂≥𝒎𝒂𝒙 𝒋(𝑪

𝑻 𝒙) 𝒋−𝝐

The supports of both players contain only -best responses

 is an -Well-Supported NE of  if

The regret of every player is at most 

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚 ≤𝝐

𝒎𝒂𝒙 𝒋(𝑪
𝑻 𝒙 ) 𝒋− 𝒙

𝑻 𝑪𝒚 ≤𝝐

 is an -NE of  if

8

0

9

1

0

1

7

2

Regret
- Row: 1 – 0 = 1
- Col:   9 – 8 = 1

“Fair”??

Normalize
- max 
- min 

- max 
- min Normalization DOES NOT change the NE

Regret
- Row: 1/2 – 0 = 1/2
- Col:   1 – 8/9 = 1/9

T

B

L R

8/9

0

1

1/2

0

1/2

7/9

1

T

B

L R
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Two-Player Games – Classes of Games 
Zero-Sum

𝑹=−𝑪

0

0

1

-1

-1

1

-1

1

0

0

1

-1

Symmetric

0

0

-1

1

1

-1

-1

1

-1

1

0

0

0

0

1

-1

1

-1

𝑹=𝑪𝑻

Win-Lose

𝑹𝒊𝒋∈ {𝟎 ,𝟏}
0

0

1

0

0

1

1

1

0

0

1

0

Coordination

𝑹𝒊𝒋=𝑪𝒊𝒋

-2

-2

1

1

0

0

3

3

0

0

1

1

Solvable via LP

Every NE yields the same 
payoff for each of the players

Easy to solveEvery symmetric two-player
game has a symmetric NE, 
i.e. both players play the same
strategy [1] [1] Non-cooperative games. Nash
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Two-Player Games – Symmetric Games

General Game Symmetric Game

3

3

2

3

2

2

6

5

0

0

𝑪
𝑹

𝑪𝑻
0

0𝑹𝑻

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

3

3

2

3

2

2

6

5
3

3

2

2

3

2

5

6
Every NE of the Symmetric Game corresponds to
an NE of the original game 

So, finding an NE in a symmetric game is hard as finding 
an NE in an arbitrary game
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Two-player games:
Algorithms and Complexity Issues
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Algorithms for NE – support 
enumeration

For each possible support  of Row player
and each possible support  of Col player
check if the linear system above has a 
feasible solution

  for every  in 
  for every  and 

 for every 

  for every  in 
for every  and 

for every 

 choices!!

 

 

(x,y) is an NE
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Algorithms for NE – Lemke-Howson
- Moves on best-response polyhedral/polytopes
- Performs pivoting on their edges until a NE is reached

(excellent explanation by von Stengel at Chapter 3 of 
Algorithmic Game Theory book, available freely online)

• “Fast” in practice
•  steps in the worst case [2]
• PSPACE-complete to decide whether 

Lemke-Howson can find a particular NE [3]

[2] Hard to Solve Bimatrix games. Savani, von Stengel
[3] The Complexity of the Homotopy Method, Equilibrium Selection, 
and Lemke-Howson Solutions. Goldberg, Papadimitriou, Savani

Is there an efficient (i.e. polynomial in the size of the game)
algorithm for finding an (approximate) NE?
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?

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚 ≤𝝐

𝒎𝒂𝒙 𝒋(𝑪
𝑻 𝒙 ) 𝒋− 𝒙

𝑻 𝑪𝒚 ≤𝝐

Complexity of Nash equilibria

Every bimatrix game possesses
at least one Nash equilibrium

Theorem (Nash)

Complexity Crash Course

NP-complete
- YES/NO problems
- Verify in polynomial time any
   solution of the given problem

Polynomial-time algorithm is
unlikely for NP-complete problems

NOT a YES/NO problem!
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𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚=𝟎

𝒎𝒂𝒙 𝒋(𝑪
𝑻 𝒙 ) 𝒋− 𝒙

𝑻 𝑪𝒚=𝟎

Complexity of constrained Nash 
equilibria

Complexity Crash Course

NP-complete
- YES/NO problems
- Verify in polynomial time any
   solution of the given problem

Polynomial-time algorithm is
unlikely for NP-complete problems

[4] Nash and correlated equilibria: Some complexity considerations. Gilboa, Zemel
[5] New complexity results about Nash equilibria. Conitzer, Sandholm
[6] The complexity of Computational Problems about Nash Equilibria in Symmetric
Win-Lose Games. Bilo, Mavronicolas

It is NP-hard to decide whether a bimatrix game possesses 
an exact NE that satisfies any of the constraints above even for 
symmetric win-lose games [4], [5], [6]
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?

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚 ≤𝝐

𝒎𝒂𝒙 𝒋(𝑪
𝑻 𝒙 ) 𝒋− 𝒙

𝑻 𝑪𝒚 ≤𝝐

Complexity Classes - TFNP

Every bimatrix game possesses
at least one Nash equilibrium

Theorem (Nash)

Complexity Crash Course

NP-complete
- YES/NO problems
- Verify in polynomial time any
   solution of the given problem

Polynomial-time algorithm is
unlikely for NP-complete problems

NOT a YES/NO problem!
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?

𝒎𝒂𝒙 𝒊(𝑹𝒚 )𝒊−𝒙
𝑻 𝑹𝒚 ≤𝝐

𝒎𝒂𝒙 𝒋(𝑪
𝑻 𝒙 ) 𝒋− 𝒙

𝑻 𝑪𝒚 ≤𝝐

Complexity Classes - PPAD

Every bimatrix game possesses
at least one Nash equilibrium

Theorem (Nash)

Complexity Crash Course

NP-complete
- YES/NO problems
- Verify in polynomial time any
   solution of the given problem

Polynomial-time algorithm is
unlikely for NP-complete problems

NOT a YES/NO problem!

PPAD (Polynomial Parity Argument Directed) [7]
- YES (i.e. total) problems
- End-Of-Line Problem
- Brouwer fixed point

Polynomial-time algorithms are unlikely for PPAD-hard problems

[7] On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence.
      Papadimitriou

…



Algorithms and Complexity of (Approximate) Nash Equilibria 32

Complexity of Nash equilibria

• NASH is PPAD-complete for two-player games [8]
It is PPAD-hard even for 

[8] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng
[9] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou

NASH is PPAD-hard for 4-player games for [9]

• Sparse games
- NASH is PPAD-complete  even for [10]
Sparse: every row and column of and has at
most 10 nonzero entries.

[10] Sparse Games are Hard. Chen, Deng, Teng

Polynomial-time algorithms are 
unlikely for PPAD-hard problems
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Complexity of Nash equilibria: Win-
Lose

[11] On the complexity of two-player win-lose games. Abbott, Kane, Valiant
[12] The approximation complexity of win-lose games. Chen, Teng, Valiant
[13] Efficient computation of Nash equilibria for very sparse win-lose bimatrix games.      
        Codenotti, Leoncini, Resta
[14] A polynomial time algorithm for finding Nash equilibria in planar Win-Lose games.
        Addario-Berry, Olver, Vetta

Polynomial-time algorithms are 
unlikely for PPAD-hard problems

• Win-lose games

- NASH is PPAD-complete [11]

-  - NASH for even for  [12]

- poly-time solvable for very sparse games [13]
  at most 2 nonzero entries per row/column

- poly-time solvable for “planar” games [14]

Win-Lose

𝑹𝒊𝒋∈ {𝟎 ,𝟏}
0

0

1

0

0

1

1

1

0

0

1

0
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Complexity of Nash equilibria: rank - k
• Rank -  games:

- Rank - 0: zero-sum. Poly-time solvable

- FPTAS for constant rank games [15]

- Rank - 1 games: poly-time solvable [16]

- Rank  3: PPAD-hard [17]

- Rank - 2 games? (claimed to be hard, no 
  formal proof known yet)

[15] Games of fixed rank: a hierarchy of bimatrix games. Kannan, Theobald
[16] Fast algorithms for rank-1 bimatrix games. Adsul, Garg, Mehta, Sohoni, von Stengel
[17] Constant rank two-player games are PPAD-hard. Mehta

Polynomial-time algorithms are 
unlikely for PPAD-hard problems
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Complexity of Nash equilibria: Imitation 
games

• Imitation Game :  is the identity matrix [18]

[18] Imitation games and computation. McLennan, Tourky
[19] Approximate Nash Equilibria of Imitation Games: Algorithms and Complexity.
        Murhekar, Mehta

Polynomial-time algorithms are 
unlikely for PPAD-hard problems

0

0

00

0

0

0

00

0 0

0

1

1

1

1

- PTAS for -WSNE [19]

- PPAD-hard for  for any  [19]
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Algorithms for -NE

• 0.75-NE [20]

• 0.5-NE [21]

• 0.36-NE [22]

• 0.3393-NE [23]

• 1/3-NE [DFM]

T
3

3

M

B

L R

2

3

2

2

1

6

6

5

3

0

1. Fix a pure strategy for the Row player

2. Compute a best response  for the Column 
     player

3. Compute a best response for the Row player

4. Row player plays equiprobably and 
    Column player plays 

DMP algorithm for 0.5-NE

𝒊

𝒊̂

𝒋

TS algorithm is based on “gradient descent”.
The approximation guarantee is tight [24]

[20] Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games.
        Kontogiannis, Panagopoulou, Spirakis
[21] A Note on Approximate Nash Equilibria. Daskalakis, Mehta, Papadimitriou
[22] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis
[23] An Optimization Approach for Approximate Nash Equilibria. Tsaknakis, Spirakis

[24] On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium.
        Chen, Deng, Huang, Li, Li
DFM: A Polynomial-Time Algoritm for 1/3-Approximate Nash Equilibria in Bimatrix Games. 
Deligkas, Fasoulakis, Markakis
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Algorithms for -WSNE

1. Check if there is a pure profile in 
that is a 2/3-WSNE

2. If there is not, solve the zero sum game 
and use the computed strategies

KS algorithm for  -WSNE 

• 2/3-WSNE [25]

• 0.6608-WSNE [26]

• 0.6528-WSNE [27]

• 0.5-WSNE for symmetric games [23]

• 0.5-WSNE [DFM*]

[25] Well Supported Approximate Equilibria in Bimatrix Games. Kontogiannis, Spirakis
[26] Approximate Well-Supported Nash Equilibria Below Two-Thirds. 
        Fearnley, Goldberg, Savani, Sorensen
[27] Distributed Methods for Computing Approximate Equilibria.
        Czumaj, Deligkas, Fasoulakis, Fearnley, Jurdzinski, Savani
[28] Approximate Well-Supported Nash Equilibria in Symmetric Games.
        Czumaj, Fasoulakis, Jurdzinski
DFM*: A Polynomial-Time Algoritm for 1/2-Well-Supported Nash Equilibria in Bimatrix Games. Deligkas, 
Fasoulakis, Markakis
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A QPTAS for -NE
[29]

[29] Playing large games using simple strategies. Lipton, Markakis, Mehta

These problems are 
NP-hard for exact NE!
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A QP Lower Bounds for constrained -
NE

[30] Approximating the best Nash equilibrium in -time breaks the 
exponential time hypothesis. Braverman, Ko, Weinstein

[30]
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A QP Lower Bounds for constrained -
NE

[31] Inapproximability results for constrained approximate Nash equilibria.   

        Deligkas, Fearnley, Savani

[31]
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A QPTAS for -NE

[32] Settling the complexity of computing approximate two-player Nash equilibria.
        Rubinstein

This is the best we can hope assuming the
Exponential Time Hypothesis for PPAD! [32]



The story so far
Given an n x n bimatrix game (R, C), 
compute an  – NE in polynomial
time w.r.t. n

0.75

0.50.382

0.364

0.3393

10
PPAD-c for

𝜺∗

KPS [20]

DMP [21]

BBM [22]

TS [23]R

CDT
DGP

LMM
QPTAS O()

TS algorithm [23] (2007)
- Works quite well in practice
- Maybe better analysis is possible?

DFM
1/3

TS analysis is proven to be tight!! [24]

[20] Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games.
        Kontogiannis, Panagopoulou, Spirakis
[21] A Note on Approximate Nash Equilibria. Daskalakis, Mehta, Papadimitriou
[22] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis
[23] An Optimization Approach for Approximate Nash Equilibria. Tsaknakis, Spirakis

[24] On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium.
        Chen, Deng, Huang, Li, Li
DFM: A Polynomial-Time Algoritm for 1/3-Approximate Nash Equilibria in Bimatrix Games. 
Deligkas, Fasoulakis, Markakis



10
PPAD-c for

𝜺∗

R

CDT
DGP

 – WSNE 

The story so far
Given an n x n bimatrix game (R, C), 
compute an  – WSNE in polynomial
time w.r.t. n

2/3
KS

0.6608
FGSS

DFM*
1/2

CDF+
0.6528

[KS] Well Supported Approximate Equilibria in Bimatrix Games. Kontogiannis, Spirakis
[FGSS] Approximate Well-Supported Nash Equilibria Below Two-Thirds. 
        Fearnley, Goldberg, Savani, Sorensen
[CDF+] Distributed Methods for Computing Approximate Equilibria.
        Czumaj, Deligkas, Fasoulakis, Fearnley, Jurdzinski, Savani
DFM*: A Polynomial-Time Algoritm for 1/2-Well-Supported Nash Equilibria in Bimatrix Games. 
         Deligkas, Fasoulakis, Markakis
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Epilogue
 Nash equilibria form the fundamental solution in games

 Hard to compute any of them!

 Harder to compute an NE with specific properties!

 Many ways to improve the results!
 New algorithms for approximate NE
 Better lower bounds
 Identify tractable cases

Challenging but important 
(and fun) problems

Thank you!
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